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 Implementation is Semantic Interpretation

 What is the computational notion of "implementation"? It is not individ
 uation, instantiation, reduction, or supervenience. It is, I suggest, semantic
 interpretation.

 7. Introduction

 Consider the implementation relationships among algorithms,
 computer programs, and the computers that execute them. An algorithm is
 (roughly) a procedure for computing a function.1 A program that is said to
 "implement" the algorithm in some programming language is a more
 detailed textual expression of the algorithm. A computer process2?an
 algorithm being executed?is a physical device (a computer) behaving in
 a certain way that is specified by the program; the physical device running
 the process "implements" the program.

 Here is another example from computer science: We "implement" an
 abstract data type such as a stack when we write code (in some program
 ming language) that specifies how the various stack operations (such as
 push and pop) will work. The following non-computer-science examples
 are clearly of the same type as these paradigms, even though we don't,
 normally, use the term 'implementation' in discussing them: A perfor
 mance is an "implementation" of a musical score or play-script. A house
 is an "implementation" of a blueprint. A set-theoretic model is an "imple

 mentation" of a formal theory.3
 But what is "implementation"? Is it sui generisi Is it individuation?

 Instantiation? Reduction? Supervenience? In this paper, I present evidence
 that implementation is semantic interpretation.

 Semantic interpretation requires two domains and one relation: a
 syntactic domain, characterized by rules of "symbol manipulation" (perhaps
 suitably generalized to be able to deal with domains that are not strictly
 speaking "symbolic");4 a semantic domain, similarly characterized; and a

 "Implementation is Semantic Interpretation" by William J. Rapaport,
 The Monist, vol. 82, no. 1, pp. 109-130. Copyright? 1999, THE MONIST, La Salle, Illinois 61301.
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 110  WILLIAM J. RAPAPORT

 relation of semantic interpretation that maps the former to the latter.5 Put
 this way, there is no intrinsic difference between the domains; what makes
 one syntactic and the other semantic is the asymmetry of the interpreta
 tion mapping. Thus, a given domain can be either syntactic or semantic,
 depending on one's interests: Typically, we understand one domain (the
 "syntactic" one) in terms of an antecedently understood domain (the
 "semantic" one).6 E.g., a computer process that implements a program
 plays the role of semantic domain to the program's role as syntactic
 domain. The same program, implementing an algorithm, plays the role of
 semantic domain to the algorithm's role as the syntactic domain.

 The thesis to be explicated and justified is (roughly) that a semantic
 domain implements a syntactic domain. For reasons that will become clear
 below, I shall use the term 'Abstraction' for the syntactic domain; thus, an
 implementation is a semantic interpretation of an Abstraction. (The case
 of the set-theoretic model implementing a formal theory suggests, in
 addition, that semantic interpretations can be seen as implementations.)

 2. Implementation in Computer Science

 It is rather surprising how few computer-science texts even try to
 define 'implementation'. For instance, all that a standard text on pro
 gramming languages says is that "the realization of a programming
 language in a computer system is called the implementation'"1 'Realiza
 tion' is left undefined. Taken literally, it means "making real," where 'real'
 is opposed to 'imaginary' or perhaps 'abstract'; to "realize" X is to
 establish a real-world, physical correlate of X. This suggests that the
 physical medium is important.

 According to the new Oxford English Dictionary, 'real' comes from
 the Latin for "pertaining to things," and its philosophical meaning, in part,
 is "having an existence in fact and not merely in appearance, thought, or
 language."8 What is made real when it is "realized"? Presumably,
 something that exists "merely in appearance, thought, or language"?
 something that is syntactically characterized or "Abstract." To realize is,
 in part, "To make real, to give reality to (something merely imagined,
 planned, etc.).... In common use from c 1750 with a variety of objects,
 as ideas or ideals, schemes, theories, hopes, fears, etc."9 Note how
 psychological or intentional these realizable things are.
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 IMPLEMENTATION IS SEMANTIC INTERPRETATION 111

 Another computer-science text says a bit more about implementa
 tion:10

 With the advent of the [IBM] System/360, the distinction between a
 computer's architecture and its implementation became apparent. As
 defined by the System/360 designers . . ., the architecture of a computer is
 its structure and behavior as seen by an assembly-language program

 mer. . . . The implementation . . . refers to the logical and physical design
 techniques used to realize the architecture in any specific instance. Thus all
 the members of the S/360-370 series share a common architecture, but they
 have many different implementations. For example, some S/360-370 CPUs
 employ fast hardwired control units, whereas others use a slower but more
 flexible microprogrammed approach to implementing the common instruc
 tion set.

 Architecture is concerned with structure and behavior; these are function
 al, "Abstract" aspects. This is not to say that it is not detailed, however,
 since the architecture is "seen by an assembly-language programmer,"
 who must know all about the details of registers, control, etc., although
 without having to worry about what a register looks like or how the
 control is actually carried out. Implementation is concerned with "logical
 and physical design techniques." 'Logical' here probably refers to "logic"
 gates, which are themselves physical. Thus, implementations are the
 physical realizations of "Abstractions."

 A physical realization is a special case, however. The full explication
 of 'implementation' requires a third term besides the implementation and
 the Abstraction; the relation is ternary : / is an implementation, in medium

 M, of Abstraction A (where M could be physical or set-theoretical, etc.).
 For instance, in the study of data structures, one talks about implementing
 a stack by means of a linked list, implementing the list in a programming
 language (say, Pascal), "implementing"?i.e., compiling?the Pascal
 program in some machine language, then implementing the machine
 language program in a real computer. As we progress along this "cor
 respondence continuum,"11 the implementing media begin as Abstractions
 themselves and gradually take on a more "physical" nature. Perhaps you
 will object that program compilation should not be treated as an imple
 mentation. Hayes, however, would not object: "A sequence of . . .
 [machine] instructions is needed to implement a statement in a high-level
 programming language such as FORTRAN or Pascal."12 So, to implement
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 is to "realize" in some medium, which might be a physical medium or
 could be some domain or language. To implement is to construct some
 thing, out of the materials at hand, that has the properties of the Abstrac
 tion; it could also be to find a counterpart that has those properties. Both
 tasks are semantic.

 3. Abstract Data Types

 The notion of an abstract data type (ADT) and its "implementation"
 is one of the most common uses of 'implementation'. There is a relative
 ly informal use of the notion, as it appears in programming languages such
 as Pascal and as it is taught in introductory computer-science courses, and
 there is a more formal, mathematically precise use.

 3.1 The Informal Notion of ADT Implementation

 A stack is a particular kind of data structure, often thought of as con
 sisting of a set of items structured like a stack of cafeteria trays: New
 items are added to the stack by "pushing" them on "top," and items can
 be removed from the stack only by "popping" them from the top. Thus, to
 define a stack, one needs (i) a way of referring to its top and (ii) operations
 for pushing new items onto the top and for popping items off the top. That,
 more or less (mostly less, since this is informal), is a stack defined as an
 ADT.

 Now, Pascal does not have the stack as one of its built-in data types
 (as it does arrays, records, or sets). So, if you want to write a Pascal
 program that manipulates data structured as a stack, you need to
 "implement" a stack in Pascal. There are several ways to implement the
 ADT "Stack" in Pascal. (1) One way is to implement it as a finite array A,
 with A[0] implementing the top. The nature of the implementing medium
 (e.g., its finiteness) brings along with it certain "implementation details"
 (concerning, e.g., stack overflow); the ADT Stack "doesn't care" about
 them (i.e., doesn't?or doesn't have to?specify what to do in these
 cases). (2) Another way is to do everything as before, but let A[n]
 implement the top. This implementation of the Stack ADT is "inverted"
 with respect to the first one. The inversion, however, is (a) a ("mere") im
 plementation detail and (b) undetectable in the program's input-output
 behavior. (This might remind you of inverted spectra.) (3) Or one could
 use Pascal's pointer data type to implement a stack as a "linked list."
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 Thus, stacks can be implemented as arrays or as lists, and lists can be
 implemented as arrays or as records with pointers. ADTs can implement
 other ADTs, or they can be implemented "directly" in the given data struc
 tures of a programming language. What's going on here?

 3.2 The Formal Notion of ADT Implementation

 To see what's going on, we need to look at more formal approaches
 to the definition and implementation of ADTs.13

 Guttag et al M assert that "the process of design (of data types)
 consists of specifying . . . operations to increasingly greater levels of
 detail until an executable implementation is achieved." The implementa
 tion appears to be merely a more detailed version of the original
 "specification." The implementation details are essential for executability
 but not, presumably, for specifiability. So the implementation details serve
 a purpose, but one distinct from the original specification (or Abstraction).

 What is the Abstraction? "A data type specification (or ADT) is a
 representation-independent formal definition of each operation of a data
 type. Thus, the complete design of a single data type would proceed by
 first giving its specification, followed by an (efficient) implementation
 that agrees with the specification."15 So, implementation?the detailed
 specification of the operations?must "agree with" the undetailed?or
 Abstract?specification; the implementation must satisfy the definitions.
 That, of course, needs to be made precise, but it is more than suggestive
 of semantic interpretation. If the Abstraction is supposed to be "represen
 tation-independent," then perhaps an implementation is a representation.
 (There can be more than one implementation, e.g., "efficient" and ineffi
 cient ones.)

 A more detailed and philosophically sophisticated approach is to be
 found in Goguen et al.16 The mathematical details are irrelevant to the
 present inquiry, but the overall picture they offer is useful, so let me attempt
 to summarize it here.

 They begin by observing that "the term abstraction in computer
 science ... has been used in at least three ways which are distinct but
 related": An abstraction is either (1) "a mathematical model or description
 of something," or (2) "the process (or result) of generalizing" or (3) "a
 concept" considered "independently] of its representation." Examples of
 (1) are "'abstract machines' as opposed to real hardware" and "abstract
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 implementation," as "when one uses sets, sequences, or other mathemati
 cal entities to model some computational process or structure."17 So, a
 mathematical model is an abstraction of some real-world entity; as such,
 the abstraction seems to play the syntactic role. On the other hand, the im
 plementation of a queue by a circular list (or a stack by a linked list) is an
 "abstract implementation," yet here it clearly plays the semantic role.18

 Goguen et al. take the third sense of 'abstraction' to be the relevant
 one for ADTs.19 The "representation" that such an abstraction is indepen
 dent of has to do with notation, or the manner in which it is expressed:

 ... an abstract data type is supposed to be independent of its representation,
 in the sense that details of how it is implemented are to be actually hidden or
 "shielded" from the user: He is provided with certain operations, and he only
 needs to know what they are supposed to do, not how they do it.20

 That is, the programmer can deal directly with the ADT and ignore its im
 plementation; one deals with it at a "high level." Consistent with our view
 that an implementation is a semantic interpretation, Goguen et al. observe
 "that what is usually called an 'abstract implementation', that is, an im
 plementation described by sets, sequences, etc., is not an 'abstraction' in
 the above sense; rather, it is a particular, but rather undetailed, imple
 mentation."21 So, an abstraction in sense (1) is not necessarily an
 abstraction in sense (3). It is undetailed, presumably because the imple
 menting medium (the implementing ADT) is itself abstract (in sense (2)).
 Still, the mathematical model is a semantic model.

 Now, what is this abstraction of the third kind? Goguen et al. note
 that it has to do with equivalence classes ("isomorphism classes").22 They
 define an ADT as "the isomorphism class of an initial algebra in a
 category" of many-sorted algebras.23 And they note that "An implementa
 tion is necessarily made within a specific framework, such as a particular
 programming language or machine";24 i.e., an implementation requires a
 "framework," i.e., an implementing medium.

 Their mathematical "approach is to model an implementation frame
 work as an algebra, with the elements of the carrier(s) being concrete data
 representations (machine states, primitive data types) and its operations
 the given basic operations (machine operations, basic instructions, programs)
 in these data representations."25 Note that they are modeling the imple

 menting medium and that they do so by the same kind of entity as for an
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 ADT, namely, an algebra! The implementation itself, of course, is something
 "physical"; it is merely being described algebraically.

 The heart of the matter is expressed by them in their mathematical
 set-up as follows:

 Let denote the implementation algebra.. .. [Let e be] the specification
 algebra. The question now is, what relationship between e and consti
 tutes an implementation!26

 This is precisely the question: What is the relationship between an Ab
 straction (a "specification algebra") and an Implementation (an
 "implementation algebra")? (Note that itself is (merely) a representation
 or model of the actual, physical implementations.) Goguen et a/.'s answer
 is that the relationship is a structure consisting of B, a mapping from
 (roughly) e to , and a "congruence" (a family of equivalence relations
 on (roughly) Ts image in E)21 The core of this is, first, the mapping from
 the Abstraction to the Implementation, which is, on my theory and con
 sistent with the view of Guttag et al., a semantic interpretation, and,
 second, the "congruence." The latter is a very special, intricate kind of iso
 morphism, one that "divides out" (they use quotient spaces) the
 "implementation details." So, (or that which is a mathematical model
 of) implements an Abstraction if and only if is a domain of semantic
 interpretation of T, ignoring the implementation details. Consider, e.g., the

 ADT Stack, and consider two specific implementations of it in Pascal,
 using an array A[0],..., A[n] with top implemented in one as A[0] and in
 the other as A[n]. In both implementations, top is implemented as a
 specific element of the array. That it is A[0] in one and A[n] in the other is
 an implementation detail.

 4. Possible Interpretations of "Implementation"

 Let's take another look at the Oxford English Dictionary. The noun
 'implement' comes from the Latin for "a filling up," as in "that which
 serves to fill up or stock (a house, etc.)," and from the Old French for "to
 fill, fill up" in the sense of "completing."28 This suggests "filling in the
 details," which an implementation in the sense we are concerned with
 certainly does.

 The verb is of more recent origin, having three senses, all with
 citations beginning in the 19th century:29
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 (a) "To complete, perform, carry into effect (a contract, agreement,
 etc.); to fulfil (an engagement or promise)." This is the earliest
 sense to be cited (1806)?implementing an obligation.

 (b) "To carry out, execute (a piece of work)." Here, the citation is
 from 1837: implementing an invention.

 (c) "To fulfil, satisfy (a condition)." This was used as early as 1857:
 implementing the "mechanical requisites of the barometer ... in
 ... an instrument."

 Senses (b) and (c) seem closest to our concerns: Sense (b) relates to an
 Abstraction, and (c) relates to the implementation of an Abstraction?to
 satisfying the conditions of the Abstraction, or having the properties of the
 Abstraction. (More recent senses, with citations from 1926 and 1944, don't
 clarify much; curiously, none of the citations come from computer science.)

 Recall that "implementation" is a relational notion, whose full context
 is always: / is an "implementation," in some "medium" M, of an "ab
 straction" A. I have suggested that the notion of Abstraction be a
 generalization of the notion of an ADT. Must Abstractions be abstract, that
 is, non-spatiotemporal? If so, then they would contrast nicely with a

 physical or concrete interpretation of an "implementation"?i.e., with the
 "medium" always being spatiotemporal. But we have seen that one Ab
 straction can implement another. So this characterization won't do. Let us
 leave the notion unrefined for now, except as that which can be imple

 mented in some medium.

 The medium could be abstract or concrete, giving rise to two
 varieties of implementation. An "abstract implementation" would be a
 specification, a filling-in of details, of an Abstraction. For instance, in top
 down design, each level (except possibly for the last) is an "abstract
 implementation" of the previous one: I begin preparing my courses with
 a bare-bones course outline and successively refine it by adding details;
 or: I start solving a problem algorithmically by writing an algorithm in
 "pseudo-code" and, by "stepwise refinement," fill in the details (e.g.,
 pseudo-code the procedures), until I finally encode it in, say, Lisp.

 A "concrete implementation" would exist in a physical (or spa
 tiotemporal) medium. It would necessarily have more details filled in,
 namely, those due to, i.e., contributed by, the medium. For example, my
 actually standing in front of the class, lecturing, is a concrete implemen
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 tation of my final course outline. The actual words I say, the actual piece
 of chalk I use, etc., are all implementation details, filled in to "the last
 detail" by the very nature of the real, spatiotemporal events. Similarly, the
 actual execution of my Lisp program (perhaps after having been compiled
 into?i.e., further implemented in?machine language)?the process?is
 its concrete implementation. Both abstract and concrete implementations
 are semantic interpretations.

 Is "implementation" a concept sui generis! Or should it be assimi
 lated to some other, perhaps more familiar, notion, such as "instance,"
 "exemplification," "reduction," "supervenience," etc.? There is very little
 agreement over the proper characterization of those other, candidate
 notions, or even over terminology. For instance, it seems clear that an im
 plementation of an Abstraction is not an "instance" or "instantiation" of
 the Abstraction, because two Abstractions (e.g., two ADTs) can
 implement each other: The ADT Record can be used to implement the

 ADT List; moreover, the ADT List can be used to implement the ADT
 Record. And, though there is probably no good reason to do so, one could,
 perversely, implement lists by records that are themselves implemented
 by lists. And so on. Yet "instantiation" is normally thought of as an asym
 metric relation. In spite of this, we find recognized authorities on
 implementations, Guttag et al, saying that an implementation is an
 "instance."30 Let's explore these issues.

 4.1 Implementation as Individuation

 In Porphyry's Tree, that early ancestor of semantic networks, a
 universal, such as a genus, is analyzed into sub-genera or species by
 means of a "specific difference" or differentia. Thus, for example, the dif
 ferentia Rational applied to the genus Animal yields the species Human (=
 Rational Animal); all other, non-human, animals are not Rational. Thus,
 Humans are differentiated from non-Humans. As a category, Human is
 "lower" than Animal; it is more "specific"?it has an extra defining
 property, namely, being rational. Human is itself a universal?as it happens,
 an infima species, i.e., a category that is not analyzed into subcategories
 but into concrete individuals, e.g., Plato, Sappho, you, me.

 What is the analogue of a differentia that, when applied to an infima
 species yields an individual? Duns Scotus called it 'haecceity', or
 "thisness". "Instantiation" is the relation between any level of Porphyry's
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 Tree and the level below it; "differentiation" is a relation between subcat

 egories (or members) of a single category.31 Thus, just as Human is
 differentiated from non-Rational Animal, so Plato is differentiated from
 Sappho, and you from me. And just as Human is instantiated from (or, is
 an instance of) Animal, so Plato, Sappho, you, and I are instantiated from
 (or, are instances of) Human. And Plato et ai, unlike Human et al, are
 "individuals": "Individuation" is the relation between an infima species
 and its individuals.

 Thus, perhaps, implementations are individuals, and Abstractions are
 universale. That does seem to hold for concrete implementations. But it
 fails to hold for abstract implementations, and it only works when there
 is a hierarchy or linear ordering of successively more detailed Abstrac
 tions. It fails to account for the relation that obtains when a list
 implements a stack.

 On the other hand, since individuals and lower-level instantiates
 can be viewed as implementations of higher-level instantiables or univer
 sale, I suggest that individuals are implementations, but not conversely.

 42 Implementation as Instantiation

 Anthony32 explicitly argues that computer "implementations" are not
 "instantiations." The background of Anthony's argument is whether "a
 Connectionist architecture instantiates the Classical framework" or
 whether there is some other (or no) relation between them.

 As Anthony uses the term,

 'Instantiation' expresses a simple relation between individuals and proper
 ties: an individual i instantiates a property if and only if Pi_In the case
 of instantiation ... a single model or architecture is involved, and what is in
 question are its properties.34

 So, for a connectionist architecture to instantiate a classical framework
 would be for it to have classical properties.

 In contrast,

 [w]here implementation is at issue ..., two functional architectures must be
 considered. A functional architecture FAI is implemented, if at all, by the
 execution of a program in a distinct functional architecture FA2.35

 So, FA2 might itself not have FAl's properties (so FA2 need not be an
 instance of FAI), but the process?the program in execution?might have
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 FAl's properties (and so be an instance of FAI). In general, this seems
 OK. For instance, a machine-language program might have FAl's proper
 ties, but the machine language itself might not. As a trivial example, a

 machine-language program can have records, while the machine language
 itself doesn't have them.

 "Intuitively," Anthony tells us, "the primitive operations, representa
 tional structures, etc. of FAI get 'made up' or 'constructed' out of the
 resources of FA2_This is the relation that typically exists, for example,
 between assembly language functional architectures . . . and higher-level
 architectures like LISP or Pascal... when the latter are up and running on
 a computer."36 So the idea is this: If FA2 (e.g., the machine language) has
 records as a primitive data type, then it's easy to implement FAI (e.g.,
 Pascal) in it, because they both already share the same properties?they
 both instantiate "having the record data type." If FA2 lacks records, they
 can nonetheless be implemented in it. But wouldn't FA2 then have
 records? Anthony seems to be trying to distinguish between essential
 properties and accidental ones: Records are an "essential" feature of a pro
 gramming language if they are among its primitive data types; otherwise
 they are a defined ("accidental") feature:

 ... in cases of implementation, lower-level architectures typically do not in
 stantiate the characteristic properties of higher-level ones. An
 assembly-level architecture implementing LISP, for instance, does not also
 instantiate LISP: it lacks the necessary primitive properties (e.g., CAR,
 CDR), and has primitive operations LISP lacks (e.g., various operations on
 the contents of the accumulator).37

 Here, 'characteristic' and 'necessary' can be taken to mean "essential."
 But doesn't a machine-language implementation of Lisp have the Lisp
 function car?38 Since car was originally a machine-language instruction
 ("contents of the address register"), perhaps a better example would be
 the Common Lisp function first.39 A machine-language implementation
 of Lisp need not have the Lisp function first. It can "simulate" first?
 or implement it??but it doesn't have it; it can do what first does
 without having first. If you'll excuse the pun, I can do what can be done
 with a car without having one?by walking, taking the bus, etc.

 We can draw a distinction between "weak" and "strong" implemen
 tations. For instance, a strong implementation of Lisp in machine language
 would be such that the machine language actually had identifiable data
 structures and procedures corresponding to lists, first, etc. A weak im
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 plementation of Lisp in machine language would be such that it would do
 the same things (e.g., be able to return the first element of a list) without
 having lists or first (just as I can get from my home to a store by car or
 by walking).

 Conversely, "it is also true that an instantiation of LISP need not
 implement any distinct, higher-level LISP architecture."40 For example, I
 suppose, Allegro Common Lisp (ACL) (understood as an instantiation
 [rather than an implementation!] of Lisp) need not implement SNePS (a
 semantic-network knowledge-representation and reasoning system
 written in ACL)41 So, instances and implementations (as Anthony defines
 them) "are mutually independent."42

 In any case, I find the interpretation of 'implementation' in terms of
 semantic models to be more illuminating. Moreover, I suspect that if one
 wanted to force the concept of an implementation into the mold of "in
 stantiations," one could do so only by seeing "instantiations" as a kind of
 semantic modeling.

 4.3 Implementation as Reduction

 Consider a set of axioms for the (non-negative) rationals; i.e.,
 consider the ADT (NonNegative) Rationals. What are some of its imple
 mentations? Well, there are the fractions, i.e., the symbol types 0/4, 1/2,

 2/3,_l/7,_etc. There are the repeating decimals, i.e., the symbol types 0.?,
 0.50, 0.6, 0.142857, etc. There are also certain constructions from the
 integers, e.g., certain ordered pairs of integers: (0, 4), (1, 2), (2, 3), (1, 7),
 etc. Each of these can be considered to be an implementation of the
 rationals. Rational numbers are anything that satisfy the axioms.

 Here, the notion of implementation details plays a larger role, since
 we seem to have "too many" rationals. In a Morning Star/Evening Star
 sense, 2/3 and 4/6 are the "same" rational number, as are the repeating
 decimals 0.19 and 0.2? and the ordered pairs (2, 3) and (4, 6). We could
 say that that's an implementation detail, and provide rules (further
 axioms?) to indicate when two "intensionally distinct" rationals are "ex
 tensionally equivalent." We have such rules for, say, addition of integers:
 Does '2 + 2 = 4' state a fact about addition, or does it assert an extensional

 equivalence between intensionally distinct integers? Or else we could?as
 in fact we normally do?implement the rationals as equivalence classes of
 ordered pairs of integers.

This content downloaded from 140.127.23.2 on Tue, 28 Jun 2016 17:24:52 UTC
All use subject to http://about.jstor.org/terms



 IMPLEMENTATION IS SEMANTIC INTERPRETATION 121

 Now, often this "implementation" of rationals by integers (plus set
 theory), is called a "reduction" of the rationals to the integers. "All we
 really need," so the reductionist says, "are the integers (and set theory);
 we can define the rationals in terms of them (or, we can reduce the
 rationals to them)." So: Is implementation just reduction? Are all reduc
 tions implementations?

 Again, we have related, but distinct, concepts. "Reducibility ... is a
 relation between theories; one theory [7] is reducible to another [TR] if,
 very roughly,. . . [Ts] predicates and claims can be translated into those
 of ,43 and TR is "simpler" or better epistemically grounded than T.
 Now, in the case of the rationals and the integers, I would really hesitate
 to say that the former have been "reduced" to the latter. I would be willing
 to say that the theory of rationals can be reduced to the theory of integers
 plus-sets. But even here, when we prove some theorem about rationals,
 we haven't proved a theorem about integers but, at best, about certain sets
 whose "ground elements" are integers. For example, to prove a theorem
 about the rational number 1/2 would be to prove a theorem about the
 following arcane set of sets whose members are integers and sets of
 integers: {{a, {a, b}} I a, b e Z+ & 2a = b}.u Suppose integers are im
 plemented as sets, and multiplication is implemented as a set of ordered
 pairs of factors. Then we might have the following situation: If {{}} and
 {{}>{{}}} implement 1 and 2 respectively, then 1/2 could be implement
 ed as the monstrosity {{a, {a,b}} \a,b e Z+ &{{{},{{}}},{{{},{{}}},
 a}} = b}. The mind boggles. Is this supposed to be easier to understand
 than 4/2' or O.5?'?

 And the only reason we're interested in those rather arcane sets "of"
 integers is because they implement?are models of?the ADT Rationals.

 We might feel more "comfortable" with these arcane sets insofar as we are
 more comfortable with good old-fashioned sets and integers rather than
 with rationals per se. But that is an epistemological consideration that is
 rather suspect in the long run.

 Once we have implemented the rationals using integers and sets, we
 also have another implementation of the integers, of course (since the
 integers are a proper subset of the rationals?or perhaps it would be better
 to say that a certain proper subset of the rationals is an implementation of
 the Integer ADT), e.g., the sequence 0/1,1/1, 2/1,3/1,_As a matter of
 fact, there are several implementations of the integers to be found among
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 the rationals. Finally, we could, if we wanted to, re-implement the
 rationals in one of these implementations of the integers, by the usual
 ordered-pair construction.

 Why bother? Well, besides whatever insights such playful model
 making gives us into the logical structure of the integers, it also shows that
 reduction (or construction) for the purposes of providing stronger episte
 mologica! foundations is not what implementation is. All of the above are
 implementations; none serves any interesting or useful reductive purposes.

 The upshot is that although some, or even all, reductions or con
 structions might be implementations, certainly not all implementations are
 reductions.

 4.4 Implementation as Supervenience

 Recall that an implementation of an Abstraction in some medium is
 a semantic model of the Abstraction in the "medium" of some semantic

 domain. And a semantic model is any structure?including the Abstrac
 tion itself!?that can be correlated (or put into correspondence) with the

 Abstraction. The closer the correlation, the better the semantic interpreta
 tion, even if, in the base case of a ?e/f-interpretation, we must resort to
 syntactic understanding (i.e., understanding via familiarity with the syn
 tactically-legal symbol manipulations).45

 One major correlation that is a plausible candidate for interpreting
 implementation is supervenience. "[T]he term supervenience is used to
 relate phenomena themselves; thus the strength of a beam would be said
 to supervene on the chemical bonds in the constitutive wood. . . . [S]up
 ervenience doesn't necessarily imply reducibility";46 neither does
 implementation (?4.3). When one domain "supervenes" on another, is it
 implemented by that other domain? And when one domain is implement
 ed by another, does it supervene on that other domain? What, then, is
 supervenience?

 4.4.1 Supervenience: An Introduction

 Kim47 gives a precise formulation of the informal notion that "one
 family of properties is 'supervenient' upon another family of properties in
 the sense that two things alike with respect to the second must be alike
 with respect to the first,"48 even though "there is no relationship of defin
 ability or entailment between the two families" of properties.49 Now,
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 implementation is neither definability nor entailment, so it could indeed
 be supervenience. According to Kim, "the main point of the talk of su
 pervenience is to have a relationship of dependence or determination
 between two families of properties without property-to-property connec
 tions [or "correlations"] between the families."50 But in the case of
 implementation there are such property-to-property correlations. So

 maybe implementation isn't supervenience? As we will see, however,
 Kim's explication of supervenience allows for such correlations.

 Kim first defines two set-operations, # and *:51 Where M is a set of
 properties, Af# is its "closure ... under the usual Boolean operations," and

 M* (c M*) is the set of "Af-maximal properties"; i.e., "if M is finite, each
 member of M * is a maximal consistent conjunction of the properties, and
 the complements of the properties, in M; if M is not finite, the members of

 M * are maximal consistent sets of the properties in M and their comple
 ments." Consider an example. Let P, ? be properties, and let = { , ?}.
 Then M* = { , ?, a ?, ?, -> ?, ^ , -,?, ^( ?), ^( ?),
 . . . }, and * = { ? ( ?) . . ., ( a -,?) ( ^?) . . .,
 ... }, where each element of M* is an M-maximal property (and?in our
 example?the first-listed element of M * contains no occurrences of ??P or
 -i?, and the second-listed contains no occurrences of - ).

 Next, let D be a domain of objects, and let , be sets of properties
 that elements of D can have. Then M is supervenient on with respect to

 D = $ D(objects in D that share all properties in N# also share all proper
 ties in M#).52 That is, suppose M supervenes on with respect to D, and
 let d,? e D. Then H(d, a share all properties in N* ?? d, d' share all prop
 erties in A/*).53 What's meant is not that d, d' have all properties in N*, but
 that if they have all and only the same properties in TV* then they also have
 the same properties in M#. So, where D, d, d\ , M are as before, M su
 pervenes on with respect toD = d{ (( V P? N*) [PN(d) 4-> PN(d')] ->
 (VPMeM*)[PM(d)<*PM(d')]).

 Kim presents an argument that reducibility and definability entail su
 pervenience.54 Can we run a similar argument to show that if M is
 implemented by N, then M supervenes on AT? The argument requires bi
 conditional between and M. Surely, if implements M, such
 biconditional would be provided for by the semantic interpretation
 function between and M. Suppose that two things diverge on some M
 property. Then they'll diverge in N#. So, if there are such biconditionals,
 then implementation does entail supervenience. Are there really such bi
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 conditionals? Since implements M, there could be implementation side
 effects (the domain of semantic interpretation might be "bigger" than the
 image of M in it). Still, if things diverge on M, they'll diverge in N#
 (though perhaps not conversely).

 Kim argues that supervenience on a finite entails that "each
 property in M which is instantiated is biconditional-correlated with some
 property in N*' and that such generalizations are law-like.55 This is surely
 true for implementation in the N-to-M direction.56 Is it true in the M-to-N
 direction?57 Suppose that Qu ..., Qn are the physical properties of the im
 plementation, that is an M-property, and that ?i v ? ? ? v Qn -> P
 Suppose, by way of contradiction, that (e.g., a computer process) has
 (e.g., a certain input-output behavior) but that lacks each Q? (i.e., is im
 plemented differently). However, is implemented somehow; let be a
 property that has in virtue of its implementation. Suppose y (some other
 process) also has K. Now, since M supervenes on ( implements M), y
 has (i.e., y has jc's input-output behavior). So, must be one of the g,s.
 Thus, Kim's argument seems to carry over (although details of the rela
 tionships between , and P, Q are not clear).

 Moreover, supervenience is a semantic relation:

 To summarize: (1) if M supervenes on N, there are property-to-property cor
 relations between M and N;[58] (2) every property in M has either a necessary
 or sufficient condition in ... ; (3) if is finite, every property in M is bi
 conditional-connected with some property in N. . . . [F]inite-based
 supervenience . . . guarantees for each property in the supervenient family a
 co-extension in the supervenience base; and depending on the modality that
 attaches to the correlations between the two sets of properties, this may yield
 reducibility and definability.59

 Kim introduced supervenience to explain the relationship of mind to
 body. Viewing the supervenient set as the mental realm and the superve
 nience base as the physical realm, each mental property has a co-extensive
 physical property and might be reducible to it, or definable in terms of it.
 The co-extensiveness almost works for implementation, but, strictly
 speaking, it doesn't. For the implementing device is not a set of proper
 ties; hence, it has no extension. Rather, it is the extension of the mental (or

 Abstract) properties. It is an open question what the appropriate "modality"
 is for sets of mental properties and sets of physical properties.
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 But there is a problem in assimilating implementation to superve
 nience: Implementation isn't a relation between sets of properties. It's a
 relation between "physical" things and Abstractions?a relation between
 two (intensionally) different kinds of things?whereas supervenience is a
 relation between sets of properties. Let A be an Abstraction and / be its im
 plementation in some medium. Then it is the implementing medium that
 has both A-properties and /-properties.60 So A-properties could supervene
 on /-properties. So, possibly, A is implemented by / if and only if A-prop
 erties supervene on /-properties. Indeed, Kim sees supervenience as a very
 general version of the family of concepts that includes reducibility, etc.61
 So perhaps it is the base relation in terms of which the others can be
 defined? I am uncomfortable with this, primarily because I see the gener
 alized semantic relation as the fundamental one, and I take implementation
 to be a specific case of a semantic relation. So, too, for supervenience, which
 is, as we saw, a correlation relation.

 A problem with supervenience as defined above is that there can be
 two "physically indistinguishable worlds" that are not also "psychologi
 cally indistinguishable."62 Kim offers "strong supervenience" as a remedy:

 A strongly supervenes on just in case necessarily for each and each
 property F in A, if has F, then there exists a property G in such that has
 G, and necessarily if any y has G it has F.63

 and he points out that "Both relations are transitive, reflexive, but neither
 symmetric nor asymmetric."64 Transitivity is good; it's needed to account
 for levels of virtual machines, each of which can be said to supervene on,
 or be implemented by, a lower-level machine. Reflexivity, though, does
 not seem to be a property that we would want implementation to have.
 This means that every implementation must have implementation-dependent
 side-effects, since every implementation of an Abstraction will contribute
 something over and above what the Abstraction specifies.

 If supervenience is non-symmetric, then it's possible for two proper
 ties to supervene on each other. Could each be an implementation of the
 other? That seems counterintuitive. Surely, two things can implement each
 other?or be semantic interpretations of each other?but not at the same
 time. There is a directionality, a point of view of the third party that uses
 one domain as a semantic interpretation or implementation of the other?
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 recall the discussions of the asymmetry of antecedent understanding.65 So
 it looks as if supervenience is not implementation.

 5. Summary

 The implementation relation is a widespread phenomenon, taking
 many guises. It is a relation that obtains between two things?I have
 called them the Abstraction and the Implementation?when the Imple
 mentation is a "concrete" or "real" or "physical" thing that has all the
 properties of the Abstraction. But we have also seen that Implementations
 can be equally "abstract." So there are two sorts of implementations:
 abstract and concrete ones, the latter being "realizations" in some physical
 medium. We have seen that they typically have more properties than their
 Abstraction. So perhaps the implementation relation is best construed
 (even etymologically) as a general term for any filling in of details;
 concrete implementations are fillings-in in concrete media. Thus, the
 notion of implementation comes along with a notion of "level": the more
 detailed level being "below" the "higher" (or more abstract) level, and the
 "concrete" or "physical" level being at the "bottom"?being the "founda
 tion" as it were.

 We have also seen that individuation, instantiation, reduction, and
 supervenience are examples of implementation, but not vice versa. The
 single best "interpretation" of implementation seems to be that of semantic
 interpretation: / is an implementation, in medium M, of Abstraction A if
 and only if / is a semantic interpretation or model of A, where A is some
 syntactic domain and M is the semantic domain.66

 William J. Rapaport
 Department of Computer Science,
 Department of Philosophy,
 and Center for Cognitive Science
 State University of New York at Buffalo

 NOTES

 1. Cf. Soare 1996; Rapaport, 1998.
 2. See Rapaport 1988,1995; Smith 1997.
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 3. Cf. Rapaport 1995 for a more elaborate survey.
 4. Cf. Bunn, forthcoming.
 5. Cf. Rapaport 1988, 1995.
 6. Cf. Rapaport 1995.
 7. Marcotty & Ledgard 1986, p. 8; my boldface.
 8. Simpson & Weiner 1989, Vol. 13, p. 272.
 9. Op. cit., p. 277.
 10. Hayes 1988, p. 47; my boldface.
 11. Smith 1987; cf. Rapaport 1995.
 12. Hayes 1988, p. 209, my italics.
 13. A good survey is Morgado 1986.
 14. Guttag et al, 1978, p. 61.
 15. Ibid.
 16. Goguen et al 1978.
 17. All quotations are from Goguen et al 1978, pp. 82-83.
 18. Cf. the "muddle of the model in the middle": Wartofsky 1979: xiii-xxvi, Rapaport

 1995.
 19. Cf. Goguen et al 1978, p. 81.
 20. Op. cit., p. 83; cf. Pamas 1972.
 21. Goguen et al 1978, p. 83.
 22. Ibid.
 23. Op. cit., pp. 88, 90.
 24. Op. cit., p. 135.
 25. Ibid.
 26. Op. cit., p. 136.
 27. Op. cit., p. 138.
 28. Simpson & Weiner 1989, vol. 7, p. 721.
 29. Op. cit., p. 722.
 30. Guttag et al 1978, p. 62.
 31. Cf. Casta?eda 1975.
 32. Anthony 1991.
 33. Op. cit., p. 325; my italics.
 34. Ibid.
 35. Ibid.
 36. Ibid.
 37. Op. cit., p. 326; my italics.
 38. The Lisp function car (or first) takes a list as input and returns its first member;

 the Lisp function cdr (or rest) takes a list as input and returns the "rest of" that list, i.e.,
 the list consisting of all but that first member.

 39. See the previous note.
 40. Op. cit., p. 326.
 41. Cf. Shapiro 1979; Shapiro & Rapaport 1987, 1992.
 42. Anthony 1991, p. 326.
 43. Smith 1991, p. 280, n. 39.
 44. The ordered pair (1, 2) "is" (or can be implemented as!) {1, {1, 2}}. The equiva

 lence class containing (1, 2) "is" {(a, b) I a, b e Z+ & la = b). So, the rational 1/2 "is"
 {{a, {a,b}}\a,be Z+&2a = b}.
 45. Cf. Rapaport 1986, 1988, 1995.
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 46. Smith 1991, p. 280, . 39.
 47. Kim 1978.
 48. Op. cit., p. 149; my italics.
 49. Op. cit., pp. 149-50.
 50. Op. cit., p. 150. But cf. the quotation from pp. 153-54, below.
 51. Op. cit., p. 152, col. 1.
 52. Ibid.
 53. That, at least, is what Kim says; but doesn't he mean M* and * Perhaps not. Cf.

 Kim 1978, p. 153, col. 1.
 54. Op. cit., p. 152, col. 1.
 55. Op. cit., p. 152, col. 2.
 56. Op. cit., p. 152, col. 1.
 57. Op. cit., p. 152, col. 2.
 58. But cf. the quotation from Kim 1978, p. 150, above.
 59. Op. cit., pp. 153-54.
 60. If a stack is implemented as a Lisp list, then a stack property (an A-property) might

 be the relation top (push (e, s) ) = e, while the corresponding Lisp-list property (an /
 property) would be (first (setf s (cons es))) = e.

 61. Kim 1979, pp. 43^4.
 62. Op. cit., p. 40.
 63. Op. cit., p. 49.
 64. Ibid.
 65. Cf. Rapaport 1995.
 66. In a sequel to this essay, I examine some of the implications of this point of view:

 the role of the "implementation details," the question of whether an implementation is "the
 real thing," and the problem of whether anything can be an implementation of anything
 else (Rapaport, in preparation, ch. 7). I am grateful to my colleague Stuart C. Shapiro for
 comments on an earlier version of this essay.
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