
Bidirectional Typing Rules: A Tutorial

David Raymond Christiansen

17 October, 2013

A type system for a programming language is not the same thing as
an efficient algorithm to check that a term inhabits some type or a means
of synthesizing a type for some term. For example, the typing rules for
ML-style let-polymorphism are quite different from the union-find algorithm
that can efficiently infer types for practical programs. Indeed, we may not
even be able to translate typing rules into an algorithm straightforwardly, by
treating each rule as a recursive function where premises are called to check
the conclusion.

Only systems that are syntax-directed can be straightforwardly translated
in this way, and many actual programming languages are not described in a
syntax-directed manner, as this is not always the easiest kind of system to
understand. A syntax-directed system is one in which each typing judgment
has a unique derivation, determined entirely by the syntactic structure of
the term in question. Syntax-directed type systems allow the typing rules to
be considered as pattern-match cases in a recursive function over the term
being checked.

Bidirectional typing rules are one technique for making typing rules syntax-
directed (and therefore providing an algorithm for typechecking) while main-
taining a close correspondence to the original presentation. The technique
has a number of advantages: the resulting system is quite understandable and
produces good error messages, relatively few type annotations are required
by programmers, and the technique seems to scale well when new features
are added to the language. In particular, bidirectional systems support a
style of type annotation where an entire term is annotated once at the top
level, rather than sprinkling annotations throughout the code.

While bidirectional typing is quite straightforward, there is currently a
lack of instructional materials explaining the concept in operational terms.
The intended audience for this tutorial are people who have some familiarity
with type systems and programming languages, but who haven’t been able to
build up the basic intuitions about bidirectional typing rules. Thus, Section 1

1

of this tutorial demonstrates these concepts in a simple setting, explaining
where and why bidirectional rules are useful. Section 3 lists a selection of
academic works and lecture notes that either use or develop bidirectional
type systems, chosen for their value as tutorials.

1 Bidirectional Rules

There are two primary ways in which a typing rule might not be syntax-
directed: it might be ambiguous in the conclusion, requiring an implementa-
tion to guess which rule to apply, or it might contain a premise that is not
determined by the conclusion. This section presents a version of the simply-
typed λ-calculus that does not have explicit type annotations on variable
binders, which makes the system not syntax-directed. Then, it demonstrates
how to convert that system to a bidirectional type system.

1.1 Simply-Typed Lambda-Calculus with Booleans

For a straightforward example, we translate the simply-typed λ-calculus with
Booleans to the bidirectional presentation. First, the traditional presenta-
tion:

Terms:
t ::= x , y , z , . . . Variables

| t t Application
| λ x . t Abstraction
| true | false Boolean constants
| if t then t else t Conditional expressions

Types:
τ ::= Bool Boolean type

| τ → τ Function type

(x : τ) ∈ Γ
(T-Var)

Γ ` x : τ

Γ, x : τ1 ` t : τ2 (T-Abs)
Γ ` λ x . t : τ1 → τ2

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1 (T-App)
Γ ` t1 t2 : τ2

(T-True)
Γ ` true : Bool

2

(T-False)
Γ ` false : Bool

Γ ` t1 : Bool Γ ` t2 : τ Γ ` t3 : τ
(T-If)

Γ ` if t1 then t2 else t3 : τ

If we attempt to read the above rules algorithmically, we consider the
context Γ in each conclusion and the term being checked to be arguments
to some function, and either failure or the type in question as a result. In
pseudocode, for instance, T-If might look like this:

inferType ctx (If t1 t2 t3) =

case (inferType ctx t1, inferType ctx t2, inferType ctx t3) of

(Some BoolT, Some ty2, Some ty3) =>

if ty2 = ty3

then Some ty2

else None

_ => None

However, we run into problems when we need to translate T-Abs:

inferType ctx (Lam x t) =

case (inferType ((x, ???)::ctx) t) of

Some ty2 => Some (Fun ??? ty2)

None => None

What should we placed where we have written ??? as a placeholder? The
rule T-Abs requires that we invent a type τ1. This works well when we
are dealing with humans and human creativity, but it is not particularly
convenient for mechanization. A bidrectional type system is far from the
only way to fix this problem. The simplest, perhaps, is to simply annotate
every λ-expression with the type of its argument. However, this can be quite
noisy in real programming languages. Additionally, one can find alternative
algorithms, such as Damas and Milner’s Algorithm W (Damas and Milner,
1982). Bidirectional type checking is useful when you want a straightforward
means of checking something closer to a surface syntax of a real programming
language.

1.2 Bidirectional STLC with Booleans

Bidirectional checking splits the above typing judgment Γ ` t : τ into
two judgments: an inference judgment Γ ` t ⇒ τ (which should be read
“t’s type can be inferred to be τ in context Γ”) and a checking judgment
Γ ` t ⇐ τ (which should be read “t can be checked to have the given type

3

τ in the context Γ”). In other words, we get two functions that work together:
an inference function, as before, and a checking function, which receives a goal
type as an additional argument. The checking function calls the inference
function when it reaches a term whose type can be inferred, comparing the
inferred type with the type being checked against. The inference function
calls the checking function when it encounters a type annotation.

The bidirectional presentation of the simply-typed λ-calculus with Booleans
requires a modification to the term syntax above. We now need a means of
representing type annotations. Otherwise, the language’s syntax remains the
same:

Terms:
t ::= x , y , z , . . . Variables

| t t Application
| λ x . t Abstraction
| true | false Boolean constants
| if t then t else t Conditional expressions
| t : τ Type annotation

Types:
τ ::= Bool Boolean type

| τ → τ Function type
The typing rule for variables can be straightforwardly translated to a rule

in inference mode, because the inference function receives the context as an
argument:

(x : τ) ∈ Γ
(BT-Var)

Γ ` x ⇒ τ

This corresponds to the following case of the inference function:

inferType ctx (Var x) = lookup x ctx

where lookup : Name -> Context -> Option Ty.
Likewise, the Boolean constants can obviously be checked in inference

mode:

(BT-True)
Γ ` true ⇒ Bool

(BT-False)
Γ ` false ⇒ Bool

Now that we have the trivial cases out of the way, let’s turn our attention
to the interaction between inference and checking modes. Obviously, if we
can infer the type of a term, then we can check it against a type. Thus, we
have the following rule:

4

Γ ` t ⇒ τ (BT-CheckInfer)
Γ ` t ⇐ τ

This corresponds to code like:

checkType ctx t ty = case inferType ctx t of

Some ty’ => if ty == ty’

then Some ty

else None

None => None

As we saw with the Boolean constants, if we can determine a type uniquely
by just inspecting a term, then we can infer that type. Obviously, we can
determine the type of a type annotation by simply reading the annotation.
Thus, typing annotations provide a means of switching from checking mode
to inference mode, as follows:

Γ ` t ⇐ τ (BT-Ann)
Γ ` t : τ ⇒ τ

This corresponds to code like:

inferType ctx (Ann t ty) = checkType ctx t ty

Conditional expressions must be checked against some result type, as we
cannot know the resulting type by examining the conditional. Because we
are in checking mode, we have received the type of the expression as an
argument. Since this is known, we use checking mode for all three premises,
to reduce the potential for a required type annotation:

Γ ` t1 ⇐ Bool Γ ` t2 ⇐ τ Γ ` t3 ⇐ τ
(T-If)

Γ ` if t1 then t2 else t3 ⇐ τ

This corresponds to the following case:

checkType ctx (If t1 t2 t3) ty =

case (checkType ctx t1 BoolTy,

checkType ctx t2 ty,

checkType ctx t3 ty) of

(Some BoolTy, Some ty2, Some ty3) => Some ty

_ => None

A consequence of this is that conditional expressions will often require type
annotations.

Just as the variables bound in function abstractions would require annota-
tions in the syntax-directed unidirectional simply-typed λ-calculus, functions
must be checked against some type. This prevents us from having to guess
the type τ1 of the argument:

5

Γ, x : τ1 ` t ⇐ τ2 (BT-Abs)
Γ ` λ x . t ⇐ τ1 → τ2

This allows a style reminiscent of programs in a language like Haskell, where
type annotations are written for a whole function at a time, rather than
interspersed across the variable bindings. For example, Boolean negation
can be written as the function:

(λ b . if b then false else true) : Bool→ Bool

which corresponds closely to the Haskell:

not :: Bool -> Bool

not b = if b then False else True

The single annotation of the entire term puts the system into checking mode,
after which the conditional does not need to be annotated. This is witnessed
by the following derivation:

(b : Bool) ∈ Γ, b : Bool

Γ, b : Bool ` b ⇐ Bool

Γ, b : Bool ` false ⇒ Bool

Γ, b : Bool ` false ⇐ Bool

Γ, b : Bool ` true ⇒ Bool

Γ, b : Bool ` true ⇐ Bool

Γ, b : Bool ` if b then false else true ⇐ Bool

Γ ` λ b . if b then false else true ⇐ Bool→ Bool
Γ ` (λ b . if b then false else true) : Bool→ Bool ⇒ Bool→ Bool

The final rule that remains to be translated to a bidirectional style is the
rule for function application. The basic intuition to have is that we must
somehow know the type of a function ahead of time, whether it be through
an explicit annotation or by having it the context. In real programming
languages, the types of library functions will be available in the context, so
this requirement may not be particularly onerous.

Because we want to enforce that the type of the function expression is
somehow known in advance, we check it in inference mode. The result of this
check will be an arrow type, which gives us a type to check the argument
against. Once we have this argument type, we can use it to check that the
argument (t2 in the rule below) has the correct type. And, because τ2 was
also recovered from the function, the conclusion judgment can be in inference
mode.

Γ ` t1 ⇒ τ1 → τ2 Γ ` t2 ⇐ τ1 (BT-App)
Γ ` t1 t2 ⇒ τ2

6

(g
:
B
o
ol
→

B
o
ol

)
∈

Γ
,f

:
B
o
ol
→

B
o
ol
,g

:
B
o
ol
→

B
o
ol
,b

:
B
o
ol

Γ
,f

:
B
o
ol
→

B
o
ol
,g

:
B
o
ol
→

B
o
ol
,b

:
B
o
ol
`

g
⇒

B
o
ol
→

B
o
ol

. . .
..
.
`

f
⇒

B
o
ol
→

B
o
ol

. . .
..
.
`

b
⇐

B
o
ol

Γ
,f

:
B
o
ol
→

B
o
ol
,g

:
B
o
ol
→

B
o
ol
,b

:
B
o
ol
`

f
b
⇐

B
o
ol

Γ
,f

:
B
o
ol
→

B
o
ol
,g

:
B
o
ol
→

B
o
ol
,b

:
B
o
ol
`

g
(f

b
)
⇐

B
o
ol

Γ
,f

:
B
o
ol
→

B
o
ol
,g

:
B
o
ol
→

B
o
ol
`
λ
b
.
g

(f
b
)
⇐

B
o
ol
→

B
o
ol

Γ
,f

:
B
o
ol
→

B
o
ol
`
λ
g
.
λ
b
.
g

(f
b
)
⇐

(B
o
ol
→

B
o
ol

)
→

B
o
ol
→

B
o
ol

Γ
`
λ
f
.
λ
g
.
λ
b
.
g

(f
b
)
⇐

(B
o
ol
→

B
o
ol

)
→

(B
o
ol
→

B
o
ol

)
→

B
o
ol
→

B
o
ol

Γ
`
λ
f
.
λ
g
.
λ
b
.
g

(f
b
)

:
(B

o
ol
→

B
o
ol

)
→

(B
o
ol
→

B
o
ol

)
→

B
o
ol
→

B
o
ol
⇒
··
·

F
ig

u
re

1:
B

id
ir

ec
ti

on
al

ty
p
in

g
d
er

iv
at

io
n

fo
r

B
o
ol

ea
n

fu
n
ct

io
n

co
m

p
os

it
io

n

7

To demonstrate how this works in concert with the rule for application,
Figure 1 demonstrates a typing derivation for composition of Boolean func-
tions:

λ f . λ g . λ b . g (f b) : (Bool→ Bool)→ (Bool→ Bool)→ Bool→ Bool

Remember that the derivation, like the bidirectional typing rules, should
be read bottom-to-top and left-to-right. This means that the results of pre-
vious “function calls” are available to later “calls”, which is why we have the
value to fill out the metavariable with when we check the type of a function
argument against the domain of the inferred type of the function.

2 Discussion

While Section 1 presented some of the advantages of a bidirectional type sys-
tem, there are certainly trade-offs. Perhaps the most serious is that variable
substitution no longer works for typing derivations. In particular, the rules
provided in Section 1.1 allow a variable in a derivation to be replaced by the
derivation for a term of the same type. This is not the case in the bidirec-
tional system of Section 1.2, because variables are checked using inference
mode, while many interesting constructs for the language must be checked
in checking mode.

Note that, while the introduction to this tutorial initially motivated bidi-
rectional type systems as a means of making a system syntax-directed, it is
not the case that all bidirectional type systems are syntax-directed. It is easy
enough to create a bidirectional system with two separate inference rules for
the same syntactic category of term, after all! Instead, bidirectional typing
rules should be seen as a way to make the system more syntax-directed that
can possibly take it all the way.

The presentation of the λ-calculus in this tutorial skipped evaluation
semantics. Presumably, the type annotations in the bidirectional system
would simply have no effect — that is, there might be a small-step rule such
as:

t : τ −→ t

or a big-step rule such as:

t ⇓ t′
t : τ ⇓ t′

8

Sometimes, explicit type annotations will need to be within a term rather
than at the top level. In particular, explicit function abstractions that are
being applied directly may require a type annotation. For example, the
following term:

(λ b . if b then false else true) true : Bool

cannot be type checked. When we begin to construct the derivation, we reach
a point where the type of an un-annotated λ-abstraction must be inferred:

Γ ` λ b . if b then false else true ⇒ ??? ???
Γ ` (λ b . if b then false else true) true ⇐ Bool

Γ ` (λ b . if b then false else true) true : Bool ⇒ Bool

However, we have no rule to perform such an inference, as BT-Abs is a
checking rule. We can solve this by providing specialized inference rules for
certain limited forms of λ-abstractions and conditionals, and we may even be
successful in the simply-typed context. While this is useful, it will not scale
to more interesting type systems for which type inference is undecidable. It
may, however, be possible to make a quite useful system in practice, where
users only need to annotate complicated code.

The algorithms that naturally result from a bidirectional type systems
are known for producing good error messages. As the type checker proceeds,
it carries with it information about the type that is expected for most terms,
and it can straightforwardly report where in a term the error occurs. Com-
pared to systems that build up collections of type constraints to be solved
later, it can be much more straightforward to locate the source of an error.

In a real programming language, it might be preferable to use a bidirec-
tional system to provide a convenient surface syntax with minimal top-level
annotations and good error messages, but to have the type checker produce
a version of the term with full type annotations on every binding for ease of
processing later.

3 Further Reading

This section does not intend to be a full survey of the academic literature
on bidirectional type checking. For that, see the introduction to Dunfield
and Krishnaswami (2013). Instead, this section lists particularly accessible
presentations.

Bidirectional type checking was introduced to the academic literature by
Pierce and Turner (1998). However, they cite the idea as “folklore” and do

9

not take credit for coming up with the basic idea. At the time, the technique
was commonly combined with ML-style type inference. They demonstrate
its application to subtyping and bounded quantification.

A set of lecture notes from Dunfield (2012) cover more ground more
quickly than this tutorial, and would be a good next resource to cement
the idea. Another set of lecture notes from Pfenning (2004) do a good job
at building intuitions regarding the view of typing rules as a program, with
input and output to and from rules. Löh, McBride, and Swierstra (2010)
use bidirectional type checking in a very accessible tutorial implementation
of a dependently-typed language. Remember to look at the code on the Web
page for the paper. Additionally, Weirich’s lecture notes and video lectures
from the Oregon Programming Languages Summer School (2013) are a good
resource if you learn better from videos and exercises.

Acknowledgments I would like to thank Joshua Dunfield for his in-depth
comments on an earlier draft of this tutorial. Additionally, I would like to
thank Anthony Cowley and Morten Fangel for catching minor mistakes.

References

Damas, Luis and Milner, Robin (1982). “Principal type-schemes for func-
tional programs”. In: ACM Symposium on Principles of Programming
Languages (POPL), Albuquerque, New Mexico. Albuquerque, New Mex-
ico: ACM, pp. 207–212.

Dunfield, Joshua (2012). Slightly revised lecture notes from McGill University
COMP 302. url: http://www.mpi-sws.org/~joshua/bitype.pdf.

Dunfield, Joshua and Krishnaswami, Neelakantan R. (2013). “Complete and
Easy Bidirectional Typechecking for Higher-Rank Polymorphism”. In:
ACM SIGPLAN International Conference on Functional Programming
(ICFP). arXiv:1306.6032[cs.PL].

Löh, Andres, McBride, Conor, and Swierstra, Wouter (2010). “A Tutorial
Implementation of a Dependently Typed Lambda Calculus”. In: Funda-
menta Informaticae 102.2, pp. 177–207.

Pfenning, Frank (2004). Lecture notes for 15-312: Foundations of Program-
ming Languages. url: http://www.cs.cmu.edu/~fp/courses/15312-
f04/handouts/15-bidirectional.pdf.

Pierce, Benjamin C. and Turner, David N. (1998). “Local Type Inference”.
In: ACM SIGPLAN–SIGACT Symposium on Principles of Programming
Languages (POPL), San Diego, California. Full version in ACM Trans-

10

http://www.mpi-sws.org/~joshua/bitype.pdf
arXiv:1306.6032 [cs.PL]
http://www.cs.cmu.edu/~fp/courses/15312-f04/handouts/15-bidirectional.pdf
http://www.cs.cmu.edu/~fp/courses/15312-f04/handouts/15-bidirectional.pdf

actions on Programming Languages and Systems (TOPLAS), 22(1), Jan-
uary 2000, pp. 1–44.

Weirich, Stephanie (2013). Lecture notes for Oregon Programming Languages
Summer School. url: http://www.cs.uoregon.edu/research/summerschool/
summer13/lectures/weirich_main.pdf.

11

http://www.cs.uoregon.edu/research/summerschool/summer13/lectures/weirich_main.pdf
http://www.cs.uoregon.edu/research/summerschool/summer13/lectures/weirich_main.pdf

	Bidirectional Rules
	Simply-Typed Lambda-Calculus with Booleans
	Bidirectional STLC with Booleans

	Discussion
	Further Reading

